Leçon Hadamard «Automorphic forms and optimization in Euclidean space» by Maryna Viazovska
The goal of this lecture course is to prove the universaloptimality of the E8 and Leech lattices.

-
avril 2019
- mardi 23 10h00 - 13h00
- mercredi 24 10h00 - 13h00
- jeudi 25 10h00 - 13h00
-
mai 2019
- mardi 14 14h30 - 16h30
- mercredi 15 10h00 - 12h00
- jeudi 16 10h00 - 12h00
The goal of this lecture course is to prove the universaloptimality of the E8 and Leech lattices.
This theorem is the main result of a recent preprint «Universal optimality of the E8 and Leech lattices and interpolation formulas» written in collaboration with Henry Cohn, Abhinav Kumar, Stephen D. Miller and Danylo Radchenko. We prove that the E8 and Leech lattices minimize energy of every potential function that is a completely monotonic function of squared distance (for example, inverse power laws or Gaussians).
This theorem implies recently proven optimality of E8 and Leech lattices as sphere packings and broadly generalizes it to long-range interactions. The key ingredient of the proof is sharp linear programming bounds. To construct the optimal auxiliary functions attaining these bounds, we prove a new interpolation theorem.
At the last lecture, we will discuss open questions and conjectures which arose from our work.
https://www.fondation-hadamard.fr/fr/financements-accueil-206-cours-avances/accueil-lecons-hadamard
Type d'événement Conférence / séminaire / webinaire - conference / seminar / webinar
Thématique Doctorat, Recherche - Research
Public Réservé à certains publics