Introduction to Statistical Learning Theory
Séminaires du professeur Rodrigo De Mello. Ses domaines de recherche concernent l'apprentissage machine, la théorie de l'apprentissage statistique et l'analyse des séries chronologiques.

-
février 2019
- mardi 19 14h00 - 17h00
- mercredi 20 14h00 - 17h00
-
mars 2019
- mercredi 13 11h00 - 13h00
- jeudi 21 11h00 - 13h00
-
avril 2019
- jeudi 04 10h00 - 12h00
- jeudi 11 10h00 - 12h00
Gràce au soutien et au financement de DigiCosme - Université Paris-Saclay, les Equipes DIG du LTCI de Telecom Paris Tech et DaSciM du LIX de l'Institut Polytechnique de Paris reçoivent le professeur Rodrigo Fernandes De Mello de l'Université de Sao Paulo au Brésil.
Mardi 19 février 2019 - 14h-17h - An introduction to the Statistical Learning Theory.
LIX - Computer Science department, Institut Polytechnique de Paris - Route de Saclay - 91120 Palaiseau - Salle : Grace Hopper
Résumé : This seminar presents the main assumptions and results found by Vapnik. By taking advantage of such theoretical background, we will also discuss on how the assumptions may fail learning (such as in temporal-based scenarios) as well as on biases of different algorithms, including Deep Learning.
Mercredi 20 février 2019 - 14h-17h - Introducing Deep Learning from Multilayer Perceptron.
LIX - Computer Science department, Institut Polytechnique de Paris - Route de Saclay - 91120 Palaiseau - Salle : Henri Poincaré
Résumé : We start formalizing learning with the Multilayer Perceptron approach and then discuss on how Convolutional Neural Networks can be designed.
Mercredi 13 mars 2019 - 11h - Introducing Deep Learning from Multilayer Perceptron.
LIX - Computer Science department, Institut Polytechnique de Paris - Route de Saclay - 91120 Palaiseau - Salle : Henri Poincaré
Résumé : This seminar will discuss on Takens' embedding theorem as a way of reconstructing phase spaces from which learning guarantees can be met using the framework provided by the Statistical Learning Theory.
Jeudi 21 mars 2019 - 11h - Introducing Deep Learning from Multilayer Perceptron.
LIX - Computer Science department, Institut Polytechnique de Paris - Route de Saclay - 91120 Palaiseau - Salle : Henri Poincaré
Résumé :This seminar introduces an approach based on EMD (Empirical Mode Decomposition) to separate stochastic from deterministic influences present in time series/data streams, something that supports the better modeling of each of those individual components.
Jeudi 4 avril 2019 - 10h00 - On the implementation of the Convolutional Neural Network: First part
Télécom ParisTech, 46 rue Baurrault, 75013 Paris - Salle : C229
Résumé : In this seminar, we will discuss how to implement the CNN. The audience is expected to have already implemented at least the Multilayer Perceptron and know its formulation.
Jeudi 11 avril 2019 - 10h00 - On the implementation of the Convolutional Neural Network: Second part
Télécom ParisTech, 46 rue Baurrault, 75013 Paris - Salle : C221
Biographie
Rodrigo Fernandes de Mello is an associate professor with the Department of Computer Science at the Universidade de São Paulo, with 15 years of carrier. He holds a M.Sc. in Computer Science from the Universidade Federal de São Carlos and a Ph.D. in Electrical Engineering from the Universidade de São Paulo, Brazil. He is also a CNPq researcher level 2B (CNPq is the Brazilian Research Agency responsible for most of the research funding in the country and, in the CS area, there are about 500 researchers who receive this award). In the last five years, he published over 22 papers in top CS journals. He has graduated 7 PhD students and 6 master students. He published a textbook with Springer International entitled 'Machine Learning: A Practical Approach on the Statistical Learning Theory' in conjunction with Prof. Moacir Antonelli Ponti in August 2018. His research interests are in the areas of Machine Learning, Statistical Learning Theory and Time Series Analysis.
Type d'événement Conférence / séminaire / webinaire - conference / seminar / webinar
Thématique Doctorat, Formation - education
Public Réservé à certains publics